Assessment of the Maneuvering Characteristics of Underwater Vehicles-I: Approaches Used for Maneuvering Analysis
PDF
Cite
Share
Request
Review
P: 6-58
January 2021

Assessment of the Maneuvering Characteristics of Underwater Vehicles-I: Approaches Used for Maneuvering Analysis

J Nav Archit Mar Technol (JNAMT) 2021;2021(219):6-58
No information available.
No information available
Received Date: 10.02.2021
Accepted Date: 25.06.2021
PDF
Cite
Share
Request

ABSTRACT

Utilizing in various operating modes (such as submerged, snorkeling and surfaced) with diverse operational requirements; the hydrodynamic design of underwater vehicles must be considered as an optimization problem that enforces a balance between conflicting features. Possibly the most critical aspect of the hydrodynamic design process is the solution of maneuvering problem. Together with the additional degrees of freedom in the vertical plane and subjecting to dominant viscous effects due to characteristic velocities and fluid properties, makes the solution of the problem even more challenging. In addition, out-of-plane effects and interactions between degrees of freedom due to characteristic geometric features (existence of a relatively big appendage such as sail) and/or mode of operation (such as snorkeling) increase the level of complexity. Generally designed and used for military purposes, underwater vehicles are expected to maintain their stealth under all circumstances. Moreover, being exposed to hydrostatic pressure during their operations restricts the maximum diving depth. The requirements of not to broach (i.e., violate the stealthiness) and not to dive below the collapse depth (i.e., cause the loss of the vehicle) necessitate a high level of accuracy for the estimation of the maneuvering characteristics of the vehicle. In literature, various methods have been developed to solve this challenging problem at the desired level of accuracy for each operation mode of the vehicle. Development of these methods brought along improvements also in secondary subjects including generic geometries, standard maneuvers, calculation algorithms etc. and led to the formation of a substantial amount of literature. This study aims to classify currently subject and chronological wise scattered literature, reveal the relationships between studies in each category, clarify the weaknesses and strength of the methods used, and mention the significant results obtained using these methods. Considering the amount of material to be covered, it is not possible to achieve above described goals in a single study. This necessitates bringing together each topic as a separate section. Accordingly, the methods -grouped under the subtopics of physical and mathematical approaches- used in solving the maneuvering problem of underwater vehicles together with the generic geometries and standard maneuvers are formed the first section of the study. The assumption of submerged state used in the studies under this section requires examining the deviations caused by the fluid boundaries under a separate title, which constitutes the second section of the study. Finally, due to the recent progress in the literature on computational methods mainly, the formation of the main topic in which the internal dynamics of these methods are examined is inevitable, which constitutes the third section of the study.