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1. Introduction
Maritime transport, which constitutes a large part of global 
trade, is a strategic sector in a race against time. Ships 
engaged in container transport in the maritime industry are 
operated with the goals of on-time delivery, high operational 
efficiency, and low downtime. However, due to the nature 
of maritime operations, unplanned downtime is sometimes 
unavoidable. These stoppages can occur for a wide variety 
of reasons, such as technical failures, environmental 
conditions, operational errors, or maintenance negligence, 

and consequently lead to significant time losses and damage 
costs.
While there is a significant body of literature on ship 
malfunctions across diverse areas, such as predictive 
maintenance, statistical analysis of accident data, and human 
and organizational factors, these studies often focus on 
single systems or the single-ship scale, and limited fleet-
scale downtime assessment based on event records remains 
limited. While recent studies have demonstrated the technical 
potential of data-driven/hybrid approaches for main engine 
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and auxiliary systems (e.g., risk prioritization, maintenance 
scheduling, contextual effects), the integration of these 
methods with real-world field incidents in container ship 
fleets and the direct translation of findings into maintenance 
prioritization and role-based training planning have not 
yet been sufficiently demonstrated. In the Turkish context, 
empirical evidence that quantitatively maps downtime 
causes at the fleet scale and translates the results into fleet 
management decisions is lacking. This study aims to fill this 
gap with a workable framework that organizes field-sourced 
incident data at the fleet level, introduces risk concentration 
(Pareto) and waiting time determinants [Classification and 
Regression Tree (CART)], and links the resulting patterns 
to condition-based maintenance and role-based training 
priorities.
The existing literature covers a wide range of topics, focusing 
on technical system failures and maintenance strategies that 
cause unplanned downtime. In academic studies on similar 
topics, predictive maintenance models for ship systems 
play a critical role in anticipating potential field failures 
and ensuring uninterrupted ship operations. Kalafatelis 
et al. [1] noted that artificial intelligence (AI)-supported 
predictive maintenance systems in the maritime sector have 
great potential, particularly in terms of preventing failures 
in main engines and auxiliary equipment. Budimir et al. [2] 
developed models for optimizing maintenance scheduling 
using Weibull and Markov-based analyses. A comparative 
study by Tinga et al. [3] demonstrates how data-driven 
and physics-based prognostic models can be used in fleet 
management. Shen et al. [4] aimed to automatically extract 
information from written text in maintenance/failure 
records for the rapid identification of malfunction causes 
and symptoms on ships. They used the graph transformer 
networks to capture important fragments of the text (e.g., 
“failure cause”, “symptom”, “equipment name”).
Operationally, Karmelić et al. [5] examine disruptions that 
reduce voyage reliability in container liner shipping, using 
both literature and internal operational reports, classifying 
delay causes into four tiers: land transport, anchorage, 
port, and cruise. Nguyen [6] has demonstrated with 
mathematical models that optimal maintenance planning 
under limited resources and time can directly reduce 
unplanned downtime. In studies focusing on the human 
factor, Islam et al. [7] emphasized the triggering effect of 
environmental influences and organizational deficiencies 
on human error in maintenance processes. Specifically for 
Türkiye, Ünlügençoğlu [8] analyzed maritime accidents and 
statistically evaluated the relationship between human error 
and equipment failure.
Unplanned stoppages can occur not only during navigation 
but also during port operations and under the influence of 

environmental factors. Romano-Moreno et al. [9] linked 
stoppages at ports to meteorological data, demonstrating that 
operational planning must include these factors. Millefiori 
et al. [10] analyzed the effects of coronavirus disease-2019 
on global maritime transport, illustrating the pressure of 
extraordinary conditions on operational continuity.
The system-level literature offers greater technical depth. 
Simion et al. [11] argued that AI-based predictive maintenance 
solutions for ship machinery provide efficiency in terms of 
reliability. Soltani Motlagh et al. [12] and Jimenez et al. 
[13] reported that the integration of physics-based models 
with machine learning in propulsion systems provides high 
accuracy in fault detection. BahooToroody et al. [14] used 
Gaussian Process Latent Variable Model and Bayesian 
inference to non-parametrically model the prediction of ship 
machinery failure risk. The model provides strong evidence 
for Pareto-based diagnosis and adaptive maintenance 
planning under uncertainty. Onwuegbuchunam et al. [15] 
developed models related to the temporal distribution of 
shaft and gearbox failures. Crankcase explosion risk and oil 
mist detectors (OMD). Numerical/computational studies of 
crankcase explosions and experimental research examining 
the morphological characteristics of oil mist particles 
provide direct evidence for determining OMD thresholds 
and reducing false alarms [16,17]. These findings provide 
a framework for why unplanned downtime originating from 
the main engine are critical in terms of both safety and 
operational time. At the critical subsystem level, thermal 
behavior and wear in stern tube bearings, risk prioritization 
in boiler systems [18,19], and duty cycle effects in deck 
equipment [20] have been identified as factors directly 
contributing to unplanned downtime.
In studies related to hull damage and structural reliability, 
reliability studies on critical load conditions such as strength 
comparisons between damaged/intact states and asymmetric 
bending in container ships confirm from a structural 
perspective that a limited number of events can produce very 
high downtime durations [21]. Network and dynamic impact 
analyses link to maintenance and operational planning 
by showing how reliability limits change in operational 
scenarios [22]. Modeling accident data using Bayesian 
approaches also enables learning cause-effect relationships 
and prioritizing “high impact–low frequency” risks [23,24]. 
Taken together, these strands offer robust methods and 
mechanisms, yet there is limited empirical, fleet-scale 
synthesis of forced stoppages grounded in incident records—
particularly for Turkish container-ship fleets. Our study 
addresses this gap by organizing field data at fleet level, 
quantifying risk concentration (Pareto) and waiting-time 
drivers (CART), and mapping the results to actionable levers 
for maintenance planning and role-specific training.
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This study aims to reveal which systems and subsystems 
experience the highest concentration of unscheduled 
downtime events based on five years of records from 50 
container ships, and which factors explain the duration of 
these stops. The research question can be summarized as 
follows: “Which technical clusters drive the most unplanned 
stoppages at the fleet level, and which variables are more 
influential in determining the level of downtime?” To this 
end, recorded technical stoppages were examined. The 397 
incidents identified over the five-year period were coded in a 
standardized manner according to systems and subsystems. 
Subsequently, a Pareto analysis was performed using 
risk scores derived from the frequency-duration-impact 
components of the events to identify the critical minority, 
and CART regression was used to extract the variables 
and threshold distinctions explaining the waiting time. The 
findings were interpreted through the decision tree structure 
and importance scores. The objective is to reveal frequently 
recurring failure patterns, evaluate the impact of these outages 
on operational performance, and develop recommendations 
that will contribute to maintenance, training, and fleet 
management processes based on the results.
This study examines in detail the forced downtime events that 
occurred on the ships of a shipping company with a container 
ship fleet between 2017 and 2021. Unplanned downtime 
during navigation and port operations over a five-year period 
involving a fleet of 50 ships was analyzed in terms of both 
technical causes and operational and training impacts. The 
aim is to identify recurring failure patterns, assess the impact 
of these stoppages on operational performance, and develop 
recommendations to contribute to maintenance, training, 
and fleet management processes based on the findings.

2. Materials and Methods
2.1. Study Area and Data Set
Unplanned downtime events of a private maritime company 
with a large container ship fleet based in Türkiye were 
examined over a 5-year period. The company operates 50 
vessels and manages Türkiye’s largest fleet in this field. 
The vessels are actively engaged in various trade routes 
worldwide.
The dataset was created by compiling and digitizing 
unplanned downtime reports prepared by ship personnel by 
the company’s technical department. The dataset records 
variables such as ship name, date, duration and location of 
the stoppage, system/component name, and reason for the 
stoppage for each event. A total of 397 unplanned downtime 
events were recorded.
The data was compiled from technical maintenance 
and incident report forms obtained from the company’s 

operational reporting system. The incidents were digitally 
entered into the system by engineers on board and ship 
technical superintendents, who are marine engineers and 
fleet managers. Standardized analysis tables were created 
from this raw data. Each incident was classified according 
to technical category. Within the three main operational 
categories (propulsion system, cargo operations, and 
mooring operations), the propulsion system-related issues 
with the highest number of incidents were divided into 
subcategories and analyzed in detail.
This study uses incident records from a single Turkish 
container-ship fleet operating predominantly on liner 
trades. While this yields high internal consistency 
(common procedures, documentation standards, and 
engine families), it constrains external validity in several 
ways. First, risk concentrations and waiting-time drivers 
may differ in fleets with distinct operating profiles, vessel 
types (tanker, bulk carrier, ro-ro), class/age distributions, or 
propulsion configurations. Second, the dataset intentionally 
excludes non-technical delays (e.g., weather, port/terminal 
operations); this design choice isolates technical stoppages 
but can inflate their relative share of total downtime and 
limits comparisons with studies using all-cause delays. 
Third, organization-specific maintenance practices (spares 
policies, OMD calibration routines, training cadence) may 
alter shipboard crew competency skills.
Only recorded technical downtimes were included in the 
analysis. Unreported minor interruptions were excluded 
from the study; unexpected technical failures that 
caused operational disruptions were considered. Planned 
maintenance, adverse weather conditions, port operational 
delays, or externally caused downtimes were excluded 
from the analysis; the focus was on technical downtimes. 
Data processing included data cleaning and categorization. 
Incomplete, inaccurate, or duplicate records were eliminated.

2.2. Analysis Method
The analytical framework adopted in this study is 
designed to balance methodological rigor with operational 
interpretability. Rather than maximizing predictive accuracy 
through black-box models, the focus is placed on transparent, 
rule-based methods that allow failure mechanisms and 
downtime drivers to be directly interpreted by fleet managers 
and marine engineers. Pareto analysis is employed to identify 
risk concentration and critical subsystems at the fleet level, 
while the CART algorithm is used to uncover threshold-
based relationships and nonlinear patterns governing 
downtime duration. This combined approach enables both 
prioritization of dominant failure modes and actionable 
insights for maintenance planning and role-based training, 
grounded in real operational data.
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2.2.1. Risk assessment and pareto analysis
Risk scores were calculated for each type of failure to 
determine the impact of failures on the operational efficiency 
of ships. Risk scores were determined using a weighted 
scoring method based on the frequency of occurrence, 
duration of the failure, and its operational impact. The Pareto 
chart created using these scores visually demonstrated the 
dominant effect of main engine failures on waiting time. 
Pareto analysis was applied to confirm the finding that 
approximately 80% of the total downtime is concentrated in 
approximately 20% of the failures.

2.2.2. CART algorithm
The CART algorithm was used to analyze the effects of 
ship main engine failures on ship waiting times. CART is 
a powerful and flexible machine learning approach widely 
used in classification and regression problems [25]. In the 
regression context, CART creates a binary decision tree 
structure that iteratively partitions the dataset into two 
subsets to identify the relationship between variables.
The modeling process begins by treating the entire dataset as 
a single node (root node). The algorithm then partitions the 
dataset into two subsets by determining the most appropriate 
independent variable and threshold value that minimizes the 
variance or mean square error (MSE) of the target variable. 
This process continues iteratively until one of the predefined 
stopping criteria is met (e.g., maximum tree depth, minimum 
terminal node size). In the final stage, the mean value of the 
target variable at each terminal node (leaf node) is assigned 
as the predicted value for all observations belonging to that 
node.
The CART model, being a nonparametric method, is highly 
effective in capturing nonlinear relationships between 
variables. Furthermore, the model’s visualizability and 
interpretability facilitates easy understanding for both 
technical and operational stakeholders in decision-making 

processes. In this study, model performance was evaluated 
using R2 (coefficient of determination), root MSE (RMSE), 
MSE, mean absolute deviation (MAD), and mean absolute 
percentage error (MAPE) statistics.
In addition, a dendrogram analysis was performed using 
Ward’s linkage method and the Euclidean distance metric 
to support the findings obtained from the CART model. 
This approach measures the similarity between failure types 
to form hierarchical clusters, thereby enabling a visual 
classification of the relationships among different categories 
of engine failures.

3. Findings
3.1. General Situation: Summary of the Number of 
Downtime
During the five-year evaluation period, a total of 397 
unscheduled downtime events were recorded in the container 
ship fleet under review. These stoppages were grouped under 
three main operational categories: Propulsion System, Cargo 
Operation, and Mooring Operation activities.
When examining the distribution of stoppages by system, 
as shown in Figure 1, 89% of downtimes (352 incidents) 
were due to propulsion systems. Stoppages during cargo 
operations accounted for 10% of unplanned stoppages, 
with 39 incidents. The remaining 1% (6 incidents) occurred 
during mooring operations.
Table 1 shows the total number of stoppages and durations 
by category. The total unplanned stoppage duration was 
calculated to be approximately 1,767 hours over the five-
year period. The duration distribution is also parallel to the 
number of incidents.
Based on these data, the average duration of a downtime is 
calculated to be approximately 4.5 hours. Across the fleet, 
the annual average number of unplanned downtimes per 
vessel is approximately 1.6. When the average main engine 

Figure 1. Distribution of stoppages by system.
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operating time is assumed to be 4,200 hours per year, the 
ratio of time spent on downtime to total sailing time is 
approximately 0.15%. While this low ratio indicates that 
fleet operations are generally planned and controlled, it 
also points to the need for priority intervention in terms of 
propulsion system failure density, maintenance planning, 
and technical training.

3.2. Distribution by Cause of Downtime
Of the 397 unplanned downtimes that occurred during 
the five-year period under review, 89% (352 incidents) 
were directly attributable to propulsion systems. This high 
percentage highlights how critical main propulsion systems 
are to operational continuity on container ships.
Based on this criticality, stoppages related to propulsion 
systems were detailed in terms of their technical components. 
The propulsion system data, shown in Table 2 with a total 
of 352 incidents and 1,460 hours of downtime, was broken 
down into subsystems and analyzed.
Due to the combined reporting of some incidents, mandatory 
downtime caused by main propulsion systems has been 
divided into nine main technical categories. This analysis 
aims to contribute to fleet management, maintenance 
planning, and technical training content by identifying the 
subsystems where downtime is concentrated.
In this distribution, main engine failures are clearly ahead 
not only in terms of the number of incidents but also in total 
downtime duration. The entire propulsion system alone 
accounted for approximately 50% of the downtime, with a 
total of 730 hours of downtime across 256 incidents. The 
most frequently recurring issues include fuel injection 

problems, fuel pump (FP) failures, and problems caused by 
the exhaust system.
In contrast, although only 4 incidents occurred in the 
propeller, drive shaft, stern tube, and bow thruster group, the 
total downtime was quite high at 384 hours. This group, with 
an average downtime of 96 hours per incident, shows that 
these system failures are rare but cause very long operational 
interruptions. In such cases, the complete operational 
downtime of the ship brings with it commercial losses as 
well as safety risks. These types of failures usually require 
the ship to wait in port for weeks for repairs. Emergency 
intervention is not possible; dry docking is usually required. 
Therefore, these components are considered critical priority. 
Preventive vibration analysis, oil analysis programs, and 
proactive maintenance scheduling are vital for this type of 
system failure. 
Some systems with relatively few incidents stand out due 
to their singular impact. Specifically, in the “Hull/Fire/
Maneuvering” category, despite only 8 incidents, the total 
downtime was 116 hours, with an average interruption of 
14.5 hours per incident. This finding demonstrates that some 
infrequent failures have a high operational impact.
Boiler systems stand out with a total of 151 hours of 
downtime across 33 incidents. The average downtime of 
4.6 hours highlights the need for continuous maintenance 
and monitoring of this system. Especially, boiler tube 
perforations lead to prolonged port delays and deviations 
from estimated arrival times.
Twelve incidents occurred in the Piping, Valves, Pumps, 
Coolers, and Heaters group, resulting in a total of 36 hours 

Table 1. Number of downtimes and durations by category.

  Propulsion 
system Cargo operation Mooring operation Total

Total downtime (number)  352  39 6 397

Total downtime duration (hours) 1460 272 35 1767

Table 2. Summary of downtime in propulsion systems by subcategory.
Propulsion system Number of incidents Duration (hour) Average duration

Automation & Alarm systems 7 4 0.6

Boiler system 33 151 4.6

Generator load sharing & Black out 25 19 0.8

Hull & Fire & Maneuvering 8 116 14.5

Main engine 256 730 2.9

Piping, valves, P/P, cooler/heater 12 36 3.0

Propeller & Shaft & Stern tube & Thruster 4 384 96.0

Others 7 20 2.9

Total 352 1460 4.1
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of downtime. With an average downtime of 3 hours, these 
components are classified as medium priority. Diesel 
generator load sharing, automation and alarm systems, and 
other groups have a limited impact on propulsion system 
downtime, with both low frequency and low duration. Most 
failures in these systems were resolved in less than 1 hour 
per incident. Incidents under the “Other” category include 
delays due to GPS display errors, pitch control failures, 
rudder & pitch-controlled propeller system failures, and 
items recorded during flag state inspections in port.
As a result, not only the frequency of propulsion system 
stoppages but also their individual impacts and system-based 
temporal intensity should be considered in fleet management. 
In addition to the main engine, boiler systems, maneuvering 
control systems, and propeller structures are also highlighted 
as priority areas in terms of preventive maintenance, spare 
parts inventory management, and training.

3.3. Critical System Analysis: An in-Depth Look
Detailed analysis of fleet data shows that some technical 
systems fail more frequently than others and have a much 
greater operational impact. In this section, critical subsystems 
causing the most downtime or leading to long durations in 
individual incidents are analyzed separately. The aim is to 
provide targeted insights for optimizing fleet management 
and technical maintenance strategies. Table 3 presents the 
number of main engine failure incidents and their downtimes 
by subcategory.
In the critical system analysis, main engine-related failures 
were divided into subcategories and examined. CART 
regression analysis and hierarchical clustering (Ward-
Linkage, Euclidean Distance) methods were evaluated 

together to determine the impact of main engine failures on 
ship downtime. The overall goal was to reveal the distribution 
of downtime events by main engine subcategories and to 
identify which systems most significantly impact operational 
continuity.
In the CART regression analysis, waiting time (in hours) 
was considered the dependent variable and failure types 
were considered the independent (explanatory) variables. 
The entire data set consisted of 11 different failure types, 
and the total number of events and average durations for each 
failure type were evaluated. The model was evaluated using 
the median and median absolute deviation (MAD) metrics, 
taking into account the distribution structure of the data 
and the sample size. This approach mitigated the impact of 
outliers in the data set, providing a more robust statistical 
representation.
Statistical performance metrics for the model generated 
using the CART method demonstrate that the analysis 
results have a strong predictive capacity. A total of four 
predictor variables were used in the resulting model, all of 
which were found to be statistically significant. The model’s 
coefficient of determination (R²=99.78%) indicates that 
almost all of the variance in the dependent variable can be 
explained. Furthermore, the error measures (RMSE=1.6601, 
MSE=2.7561, MAD=0.7304, MAPE=0.0377) were quite 
low. These results demonstrate that the model successfully 
predicts ship waiting times with high accuracy and low error 
(Table 4).
Figure 2 demonstrates the variation in model error, measured 
by Relative MAD, with respect to the number of terminal 
nodes. While increasing the number of nodes typically 
lowers the error rate, an excessive number of nodes can 

Table 3. Number and duration of main engine incidents by subcategory.

Main engine failures Number of 
incidents Duration (hour) Duration (day)

Oil mist detector 27 53.8 2.2

Fuel pump & Inj VV/Inj pipe 52 153.6 6.4

Fuel line & Fuel filter 24 60.3 2.5

Exhaust 44 96.1 4.0

Automation & Sensor failure 17 23.6 1.0

Lubrication system & Water in oil & LO filter 16 76.0 3.2

Cooling system & Cover 14 54.0 2.2

Piston & Rings   7 49.5 2.1

Start & Maneuvering & Governor system 24 76.1 3.2

Alpha lubricator 10 15.9 0.7

Other 21 71.3 2.9

Total 256 730.2 30.4
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lead to model complexity and overfitting, thereby reducing 
the model's ability to generalize. Therefore, identifying 
the optimal trade-off is crucial. The analysis determined 
the optimal structure to be 8 terminal nodes, where the 
Relative MAD was minimized to 0.0291. At this optimal 
configuration, the correlation coefficient of the training set 
was calculated as 87.33%.
The regression tree generated as a result of the analysis is 
shown in Figure 3. At the root node of the tree (Node 1), the 
median waiting time for all faults was determined to be 60.25 
hours. This value serves as a general indicator of performance 
across all fault types examined. The high median absolute 
deviation (MAD=25.13) indicates significant differences in 
waiting times across fault types.
The model categorizes failure types into two main groups. 
The main difference between these two groups is the median 
values ​​in the waiting time distributions. The first group 
(Node 2) consists of failures with shorter waiting times on 
average, while the second group (Node 5) includes failure 

types characterized by longer waiting times. The first 
separation of the model was based on the “main engine event 
type” variable, which revealed two main groups. The first 
group represents events in the categories of alpha lubricator, 
automation & sensor, cooling system, fuel line & filter, OMD, 
piston & rings (Alp_Lub, Au_Sen, Cool, FL, OMD, Pist), 
while the second group includes events in the categories of 
exhaust, FP & injection valve (inj vv), lubrication system, 
other, and start & manuevring (Exh, FP, Lub, Other, Star). 
The median value for the first group on the left branch was 
calculated as 51.63, and for the second group on the right 
branch as 76.05. This shows that waiting times due to engine 
failures in the second group have a higher impact.
In particular, the median value for FP and valve failures was 
determined to be 153.64, standing out as the factor with the 
highest impact on the system. This clearly demonstrates 
that fuel injection system malfunctions are a key parameter 
significantly affecting downtime. Fuel injection line 
malfunctions (pump barrel and plunger  wear, control rack/
governor lockup, fuel valve nozzle clogging, common-rail 
pressure leaks, timing deviations) directly reduce cylinder 
combustion pressure and ignition quality. The resulting 
effects include power loss, unsteady combustion, exhaust 
temperature deviations, vibration, and the necessity of 
slowdowns/stoppages for safety reasons. Many interventions 
on the fuel injection system at sea can extend downtime due 
to the need for equipment cooling, fine-tolerance component 
replacement, calibration, testing procedures, or limited 
equipment and spare parts availability.
Similarly, faults related to the “Exhaust (Exh)” and 
“Lubrication (Lub)” systems were observed to have high 
median values. Because these are critical parameters that 
directly affect engine performance, they stand out as the most 

Table 4. Performance metrics for the CART regression model.
Total predictors 4

Important predictors 4

Number of terminal nodes 8

Minimum terminal node size 1

R-squared 99.78%

Root mean squared error (RMSE) 1.6601

Mean squared error (MSE) 2.7561

Mean absolute deviation (MAD) 0.7304

Mean absolute percent error (MAPE) 0.0377
CART: Classification and Regression Tree

Figure 2. Optimization of the node.
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significant contributors to downtime and require careful 
attention. It is technically expected that exhaust (Exh) and 
lubrication (Lub) faults produce high median downtime. 
Soot/oil carryover in the exhaust line, turbocharger fouling, 
or manifold and seal leaks increase back pressure, disrupting 
combustion. Safety measures such as power reduction/stop, 
cooling, cleaning, and rebalancing (turbo, sensor, insulation) 
prolong downtime. On the lubrication side, pressure drop/
pump failure, filter blockage, viscosity and temperature 
deviations, or increased metal particles lead to critical 
scenarios such as bearing damage and the risk of crankcase 
explosion. This necessitates time-consuming interventions 
such as oil sample analysis, circuit checks, filter and cooler 
maintenance, and bearing inspections. In conclusion, Exh 
and Lub faults are critical parameters that directly affect 
engine performance.

In contrast, failures occurring in the “sub-components (Alp_
Lub)”, “cooling (Cool)”, and “sensor (Au_Sen)” systems 
have lower median values. This result can lead to shorter 
downtimes due to the early detection of these failures and 
rapid intervention during maintenance processes. Failures in 
these three groups are generally localized and are quickly 
managed onboard using redundant/twin equipment (stand-
by pumps, parallel heat exchangers), isolation valves, and 
modular component replacement. In cooling circuits, flow 
is maintained with a pump/heat exchanger switch-over; 
system safety is maintained by calibration/restart or rapid 
replacement on the sensor side; and in lubrication sub-
components, filter replacement, leak repair, and bypass 
options shorten downtimes. Furthermore, since these failures 
are often detected with early warning (alarm), they can be 
deferred until port under power-limited operation rather than 

Figure 3. CART regression analysis results showing the effect of main engine failures on downtime.
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a full shutdown for safety reasons; consequently, downtimes 
are typically short.
Figure 4 shows a Pareto analysis of main engine failures. The 
graph shows the severity of failure types based on the risk 

score in ship operations. According to the analysis results, 
failures caused by OMD were identified as the most critical 
failure type, accounting for 63.1% of the total risk. This result 
demonstrates the crucial importance of regular maintenance 

Figure 5. Dendrogram showing the similarity levels of fault types.

Figure 4. Pareto chart showing the severity of main engine failures according to risk scores.
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and monitoring of OMD systems for main engine safety and 
operational continuity. OMD alarms are generally based on 
two factors: actual oil mist detection (crankcase fire risk, 
high density) or false alarms due to sensor sensitivity and air 
pressure adjustment. In these events, the operational impact 
is significant because the engine automatically shuts down 
or reduces speed. Often, the ship must be shut down until the 
alarm is verified. While some failures in these systems do not 
pose a real risk, each one triggers a maximum operational 
response due to safety protocols. Even if there is a sensor 
error, the engine must be shut down and the necessary 
checks performed seriously, just like the actual oil mist 
risk. A high-priority, critical alarm is due to the potential 
for major damage to the engine or a crankcase explosion. 
This demonstrates that factors such as calibration frequency 
of OMD systems, sensor quality, and crew diagnostic ability 
are critical for operational continuity.
OMD failures are followed by FP and valve failures (14.8%) 
and exhaust system (Exh) failures (7.9%). When these three 
failure types are considered together, they account for 85.8% 
of the total risk, indicating that operational disruptions in 
the majority of the system are caused by these components. 
Other failures (starting system, fuel leakage, lubrication 
system, etc.) constitute only less than 15% of the total risk.
This finding is consistent with the “80/20 Pareto principle” 
and demonstrates that preventive maintenance of critical 
components, particularly OMD, fuel, and exhaust systems, 
should be prioritized to improve system performance and 
reduce ship downtime.
Comparing the findings with those obtained through 
hierarchical cluster analysis (Figure 5), significant parallelism 
was observed between the two methods. The clustering of 
“OMD”, “Exh”, and “FP” failures within the same cluster in 
the dendrogram is consistent with the high median values ​​of 
these parameters in the CART analysis. Similarly, the close 
clustering of “Cool”, “Lub”, and “Run” failures confirms the 
high correlation between these components due to common 
operating conditions (e.g., heat transfer and lubrication 
processes). Another cluster includes the auxiliary sensor 
(Au_Sen), alpha lubricator (Alp), and starting system (Star) 
failures, indicating that these failures are related to electronic 
control and monitoring systems.

4. Discussion
In this section, the findings obtained in the study are 
compared with similar studies in the literature and their 
operational implications are evaluated. The fact that 89% of 
the unplanned stoppages identified in the study were caused 
by propulsion systems reveals that ship operations are largely 
dependent on these systems. This finding coincides with the 
assessment in Vizentin et al.’s [26] study. Vizentin et al. [26] 

states that propulsion systems are the main source of failures 
in container ships, particularly concentrated in the main 
engine and shaft lines. The high failure rate poses a risk not 
only technically but also in terms of operational reliability. 
Numerical and experimental studies on the risk of crankcase 
explosions and the reliability of OMD provide concrete 
scientific evidence for optimizing detector threshold values 
and reducing false alarms by analyzing the morphological 
characteristics of oil mist particles in the crankcase [16,17].
Failures occurring in systems such as stern tube and propellers 
cause quite long downtimes despite being observed at low 
frequencies. This creates a special risk profile in terms of 
fleet management. A technical report prepared by Kuroiwa 
et al. [27] states that stern tube bearing failures are mostly 
caused by deterioration in lubrication systems, leaks in 
gaskets, and inadequate temperature control. Similarly, 
an experimental study by Chang et al. [28] showed that 
water-lubricated shaft sleeve bearings are sensitive to 
parameters such as temperature, load, and speed, and even 
a small tolerance deviation can cause long-term operational 
downtime. In this context, shaft sleeve and propeller systems 
should be considered strategic critical systems due to their 
high downtime, despite the low number of incidents.
The source of some unplanned stoppages of ships is not 
technical failure but rather faulty or overly sensitive alarm 
notifications from automation systems. In particular, “false 
positive” alarm events originating from OMD systems 
create uncertainty in the crew’s decision-making mechanism 
and sometimes lead to unnecessary stoppages. Thorpe and 
Pabby’s [29] comprehensive analysis indicates that the 
high sensitivity of OMD systems does not always provide 
a safety advantage; on the contrary, false alarms lead to a 
loss of confidence and psychological stress among the ship’s 
crew. In this context, it is evident that topics such as alarm 
management and crew decision-making competence should 
be an integral part of technical training.

5. Evaluation and Results
This study systematically evaluated 397 unplanned downtimes 
recorded on container ships during the 2017-2021 period. 
The center of gravity of downtimes was the propulsion 
system (352 incidents; 89%), while cargo operations (39 
incidents; 10%) and mooring downtimes (6 incidents; 1%) 
were among the remaining downtimes. Total unplanned 
downtime was calculated as 1,767 hours, with an average 
duration per incident across the fleet of approximately 4.5 
hours. Downtimes related to the main engine alone, within 
the propulsion system, accounted for approximately half of 
the total duration, with 256 incidents and 730 hours.
A detailed examination of the main engine subtypes revealed 
that FP-injector, exhaust (Exh), and lubrication (Lub) 
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failures were characterized by high median wait times, while 
cooling (Cool), sensor (Au_Sen), and subcomponent (Alp_
Lub) failures were managed in relatively short times. In the 
CART regression tree, the root node began with a median 
wait time of 60.25 hours; after the decomposition, one 
branch corresponded to a median wait time of 51.63 hours, 
and the other to 76.05 hours. In this structure, the median 
for FP failures reached the highest value of ~153.64 hours, 
indicating that fuel injection failures significantly prolonged 
wait times. Hierarchical clustering results supported this 
picture; the close clustering of OMD-Exh-FP indicated a 
tendency toward long waits, while the association of Cool-
Lub-Pist indicated a common behavior related to heat 
transfer and lubrication conditions. Pareto analysis showed 
that OMD-related events accounted for 63.1% of the total 
risk, FP for 14.8%, and Exh for 7.9%; these three items 
together reached 85.8%. This overall picture indicates that a 
small number of critical items at the fleet level drive a large 
portion of the total waiting time.
A condition-based maintenance package is recommended 
for the fuel-exhaust-lubrication triad, where risks are most 
pronounced. As a technical maintenance strategy, cyclical 
component replacement programs should be established 
fleet-wide for injectors, FPs, and exhaust components. To 
reduce both fuel and exhaust system problems, main engine 
performance values, especially maximum combustion 
pressure values, should be checked more frequently, and 
maintenance should be planned to anticipate potential 
problems.
On the fuel side, test bench calibration records for injection 
pumps/injectors should be regularly maintained. To save 
time in the event of malfunctions in these systems, especially 
based on competency, third- or fourth-level engineers should 
be trained and made aware of maintaining spare parts for 
replaceable fuel system components.
Exhaust gas temperature trend monitoring should be 
implemented in the exhaust; deviations above ±30 °C 
between cylinders can be detected before they reach 
alarm levels, enabling early intervention. To achieve this, 
implementing a checklist for systems under the control and 
monitoring of watchkeeping engineers can prevent forced 
shutdowns related to the exhaust system, particularly through 
regular monitoring of exhaust temperatures.
Monthly oil analysis (particulate matter/viscosity/BN) 
results in the lubrication system should be visualized using a 
“traffic light” approach. Laboratory results should be closely 
monitored by the office and the ship. Onboard oil analyses 
should be increased in frequency, and all engineers should 
be trained on this subject.

To support these systems, which frequently cause shutdowns, 
the minimum critical onboard inventory (fuel valve nozzles, 
plunger/barrel, exhaust valve spares, pressure/temperature 
sensors, filters) should be recalculated according to route 
and lead time; low-threshold warnings should be entered 
into the planned maintenance system. The goal is to reduce 
the number of stoppages caused by these three by ≥15% per 
year and to shorten the wait per event by ≥30 min.
Delays in OMD-related shutdowns often arise from the 
inability to quickly distinguish between true and false alarms. 
A three-tiered approach is recommended for every ship: (i) 
Hardware: Sensor calibration intervals should be shortened; 
a 2-minute quick checklist for aspiration lines, filters, and 
sampling should be standardized. (ii) Workflow: A one-
page “procedure/verification protocol” (reserve sensor, local 
heat/vibration, oil mist monitoring) to be followed when an 
alarm occurs should be visible in the engine control room. 
(iii) Recording: The “alarm time-verification steps-result” 
fields should be mandatory in the engine room logbook. The 
goal is to reduce unnecessary OMD-related delays by 30% 
and reduce verification time in real-world situations to <5 
minutes.
The utility of the CART decision tree depends on up-to-
date and consistent data. Mandatory, coded fields (system/
subsystem, start and end, steps implemented, verification 
period, result) should be added to incident forms; free 
text should be kept to a minimum. The model should be 
retrained at least annually with new data; tree depth, number 
of terminal nodes, R², and RMSE should be reported. The 
risk thresholds used in Pareto should be updated with annual 
reviews based on fleet age, fuel quality, or line changes. A 
“top three root causes - top three actions” table should be 
communicated to the fleet through ship-to-office feedback 
meetings. Average waiting per stop, incident frequency, and 
duration in critical clusters should be monitored as indicators 
of success.
To translate technical measures into lasting results, a 
structured fleet-wide competency development program is 
recommended. A role-based competency matrix (3rd, 2nd, 
chief engineer, electrician, etc.) should be established. OMD 
alarm management, critical subsystem diagnostics derived 
from CART, fuel-exhaust-lubrication package procedures, 
and shaft line early warning signals should be core modules 
within this matrix.
Two channels for training delivery: (i) Microlearning 
(10-12-minute videos/notes), (ii) scenario-based exercises 
(monthly online + quarterly live demonstration). 
Standardized checklists and time objectives should be used 
for each scenario. An onboarding package, familiarization 
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training (first 30 days) should be mandatory for newly 
appointed personnel, and competency should be verified 
with an annual refresher exam (≥80% success). To track 
the impact of training, KPIs (Key Performance Indicators) 
(training participation rate, drill success score, and fault 
response time after training) should be monitored, and ships 
with low performance should be inspected and trained. The 
goal is to reduce downtime in critical clusters by 10-15% and 
diagnosis times by 20% in the first 12 months after training.

6. Conclusion
This study presents a fleet-scale analysis of unscheduled 
downtime in container ship operations based on five years 
of operational records from 50 vessels. By combining risk-
based Pareto analysis with an interpretable CART regression 
framework, the research identifies a limited number of 
technical subsystems that dominate both downtime frequency 
and duration. The results demonstrate that propulsion-
related failures particularly those associated with the main 
engine fuel, exhaust, lubrication, and oil mist detection 
systems account for a disproportionate share of operational 
disruption, despite the presence of numerous lower-impact 
failure modes.
Beyond identifying critical failure clusters, the study 
contributes a practical, data-driven framework that links 
empirical downtime patterns to maintenance prioritization 
and role-based training strategies. The emphasis on 
interpretability enables direct translation of analytical 
outcomes into actionable decisions for fleet managers 
and marine engineers. While the findings are specific to 
container ship operations within a homogeneous fleet, the 
proposed analytical approach is transferable to other vessel 
types and operational contexts. Future studies may extend 
this framework by incorporating additional fleets, integrating 
exposure-normalized indicators, and evaluating long-
term performance improvements resulting from targeted 
maintenance and training interventions.
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