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Abstract

Unplanned downtime in liner shipping undermines voyage reliability and increases costs. This study systematically compiles 397 unplanned
downtime events in a container ship fleet between 2017 and 2021, standardizing them according to system/subsystem and time/location attributes.
A risk score consisting of frequency X duration X impact components was defined to quantify the severity of downtime on the operation. Pareto
analysis was applied to identify a small number of critical causes. Variables driving downtime were extracted using a Classification and Regression
Tree (CART) model and supported by Ward's linked hierarchical clustering. The findings show that 89% (352/397) of downtimes were propulsion/
propulsion system-related, representing approximately 1,460 hours of the total 1,767 hours; main engine events predominated in this group with
256 incidents and ~730 hours. Despite their rarity, shaft/propeller/stern-tube failures lead to very long delays per event (=96 hours on average).
CART outputs reveal that the longest downtimes are associated with fuel pump and injection failures (median ~153.6 hours), while exhaust and
lubrication-related failures are also high-impact. Pareto analysis showed that oil mist detector (OMD) related events accounted for 63.1% of the
total risk, fuel injection 14.8%, and exhaust 7.9%; these three factors accounted for 85.8% of the risk. The findings suggest prioritizing fleet wide
condition-based maintenance packages, targeted spare parts management, exhaust gas trend monitoring, rigorous OMD calibration/validation
flows, and role-based training programs across the fuel, exhaust, and lubrication triad. Key indicators should be defined to track annual downtime
reductions of >10-15% in critical clusters and improvements in diagnostic speed.
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1. Introduction
Maritime transport, which constitutes a large part of global

and consequently lead to significant time losses and damage
Ccosts.

trade, is a strategic sector in a race against time. Ships
engaged in container transport in the maritime industry are
operated with the goals of on-time delivery, high operational
efficiency, and low downtime. However, due to the nature
of maritime operations, unplanned downtime is sometimes
unavoidable. These stoppages can occur for a wide variety
of reasons, such as technical failures, environmental
conditions, operational errors, or maintenance negligence,

While there is a significant body of literature on ship
malfunctions across diverse areas, such as predictive
maintenance, statistical analysis of accident data, and human
and organizational factors, these studies often focus on
single systems or the single-ship scale, and limited fleet-
scale downtime assessment based on event records remains
limited. While recent studies have demonstrated the technical
potential of data-driven/hybrid approaches for main engine
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and auxiliary systems (e.g., risk prioritization, maintenance
scheduling, contextual effects), the integration of these
methods with real-world field incidents in container ship
fleets and the direct translation of findings into maintenance
prioritization and role-based training planning have not
yet been sufficiently demonstrated. In the Turkish context,
empirical evidence that quantitatively maps downtime
causes at the fleet scale and translates the results into fleet
management decisions is lacking. This study aims to fill this
gap with a workable framework that organizes field-sourced
incident data at the fleet level, introduces risk concentration
(Pareto) and waiting time determinants [Classification and
Regression Tree (CART)], and links the resulting patterns
to condition-based maintenance and role-based training
priorities.

The existing literature covers a wide range of topics, focusing
on technical system failures and maintenance strategies that
cause unplanned downtime. In academic studies on similar
topics, predictive maintenance models for ship systems
play a critical role in anticipating potential field failures
and ensuring uninterrupted ship operations. Kalafatelis
et al. [1] noted that artificial intelligence (AI)-supported
predictive maintenance systems in the maritime sector have
great potential, particularly in terms of preventing failures
in main engines and auxiliary equipment. Budimir et al. [2]
developed models for optimizing maintenance scheduling
using Weibull and Markov-based analyses. A comparative
study by Tinga et al. [3] demonstrates how data-driven
and physics-based prognostic models can be used in fleet
management. Shen et al. [4] aimed to automatically extract
information from written text in maintenance/failure
records for the rapid identification of malfunction causes
and symptoms on ships. They used the graph transformer
networks to capture important fragments of the text (e.g.,

“failure cause”, “symptom”, “equipment name”).

Operationally, Karmeli¢ et al. [5] examine disruptions that
reduce voyage reliability in container liner shipping, using
both literature and internal operational reports, classifying
delay causes into four tiers: land transport, anchorage,
port, and cruise. Nguyen [6] has demonstrated with
mathematical models that optimal maintenance planning
under limited resources and time can directly reduce
unplanned downtime. In studies focusing on the human
factor, Islam et al. [7] emphasized the triggering effect of
environmental influences and organizational deficiencies
on human error in maintenance processes. Specifically for
Tiirkiye, Unliigengoglu [8] analyzed maritime accidents and
statistically evaluated the relationship between human error
and equipment failure.

Unplanned stoppages can occur not only during navigation
but also during port operations and under the influence of
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environmental factors. Romano-Moreno et al. [9] linked
stoppages at ports to meteorological data, demonstrating that
operational planning must include these factors. Millefiori
et al. [10] analyzed the effects of coronavirus disease-2019
on global maritime transport, illustrating the pressure of
extraordinary conditions on operational continuity.

The system-level literature offers greater technical depth.
Simionetal.[11]arguedthat Al-based predictive maintenance
solutions for ship machinery provide efficiency in terms of
reliability. Soltani Motlagh et al. [12] and Jimenez et al.
[13] reported that the integration of physics-based models
with machine learning in propulsion systems provides high
accuracy in fault detection. BahooToroody et al. [14] used
Gaussian Process Latent Variable Model and Bayesian
inference to non-parametrically model the prediction of ship
machinery failure risk. The model provides strong evidence
for Pareto-based diagnosis and adaptive maintenance
planning under uncertainty. Onwuegbuchunam et al. [15]
developed models related to the temporal distribution of
shaft and gearbox failures. Crankcase explosion risk and oil
mist detectors (OMD). Numerical/computational studies of
crankcase explosions and experimental research examining
the morphological characteristics of oil mist particles
provide direct evidence for determining OMD thresholds
and reducing false alarms [16,17]. These findings provide
a framework for why unplanned downtime originating from
the main engine are critical in terms of both safety and
operational time. At the critical subsystem level, thermal
behavior and wear in stern tube bearings, risk prioritization
in boiler systems [18,19], and duty cycle effects in deck
equipment [20] have been identified as factors directly
contributing to unplanned downtime.

In studies related to hull damage and structural reliability,
reliability studies on critical load conditions such as strength
comparisons between damaged/intact states and asymmetric
bending in container ships confirm from a structural
perspective that a limited number of events can produce very
high downtime durations [21]. Network and dynamic impact
analyses link to maintenance and operational planning
by showing how reliability limits change in operational
scenarios [22]. Modeling accident data using Bayesian
approaches also enables learning cause-effect relationships
and prioritizing “high impact-low frequency” risks [23,24].
Taken together, these strands offer robust methods and
mechanisms, yet there is limited empirical, fleet-scale
synthesis of forced stoppages grounded in incident records—
particularly for Turkish container-ship fleets. Our study
addresses this gap by organizing field data at fleet level,
quantifying risk concentration (Pareto) and waiting-time
drivers (CART), and mapping the results to actionable levers
for maintenance planning and role-specific training.
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This study aims to reveal which systems and subsystems
experience the highest concentration of unscheduled
downtime events based on five years of records from 50
container ships, and which factors explain the duration of
these stops. The research question can be summarized as
follows: “Which technical clusters drive the most unplanned
stoppages at the fleet level, and which variables are more
influential in determining the level of downtime?” To this
end, recorded technical stoppages were examined. The 397
incidents identified over the five-year period were coded in a
standardized manner according to systems and subsystems.
Subsequently, a Pareto analysis was performed using
risk scores derived from the frequency-duration-impact
components of the events to identify the critical minority,
and CART regression was used to extract the variables
and threshold distinctions explaining the waiting time. The
findings were interpreted through the decision tree structure
and importance scores. The objective is to reveal frequently
recurring failure patterns, evaluate the impact of these outages
on operational performance, and develop recommendations
that will contribute to maintenance, training, and fleet
management processes based on the results.

This study examines in detail the forced downtime events that
occurred on the ships of a shipping company with a container
ship fleet between 2017 and 2021. Unplanned downtime
during navigation and port operations over a five-year period
involving a fleet of 50 ships was analyzed in terms of both
technical causes and operational and training impacts. The
aim is to identify recurring failure patterns, assess the impact
of these stoppages on operational performance, and develop
recommendations to contribute to maintenance, training,
and fleet management processes based on the findings.

2. Materials and Methods

2.1. Study Area and Data Set

Unplanned downtime events of a private maritime company
with a large container ship fleet based in Tiirkiye were
examined over a 5-year period. The company operates 50
vessels and manages Tiirkiye’s largest fleet in this field.
The vessels are actively engaged in various trade routes
worldwide.

The dataset was created by compiling and digitizing
unplanned downtime reports prepared by ship personnel by
the company’s technical department. The dataset records
variables such as ship name, date, duration and location of
the stoppage, system/component name, and reason for the
stoppage for each event. A total of 397 unplanned downtime
events were recorded.

The data was compiled from technical maintenance
and incident report forms obtained from the company’s
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operational reporting system. The incidents were digitally
entered into the system by engineers on board and ship
technical superintendents, who are marine engineers and
fleet managers. Standardized analysis tables were created
from this raw data. Each incident was classified according
to technical category. Within the three main operational
categories (propulsion system, cargo operations, and
mooring operations), the propulsion system-related issues
with the highest number of incidents were divided into
subcategories and analyzed in detail.

This study uses incident records from a single Turkish
container-ship fleet operating predominantly on liner
trades. While this yields high internal consistency
(common procedures, documentation standards, and
engine families), it constrains external validity in several
ways. First, risk concentrations and waiting-time drivers
may differ in fleets with distinct operating profiles, vessel
types (tanker, bulk carrier, ro-ro), class/age distributions, or
propulsion configurations. Second, the dataset intentionally
excludes non-technical delays (e.g., weather, port/terminal
operations); this design choice isolates technical stoppages
but can inflate their relative share of total downtime and
limits comparisons with studies using all-cause delays.
Third, organization-specific maintenance practices (spares
policies, OMD calibration routines, training cadence) may
alter shipboard crew competency skills.

Only recorded technical downtimes were included in the
analysis. Unreported minor interruptions were excluded
from the study; unexpected technical failures that
caused operational disruptions were considered. Planned
maintenance, adverse weather conditions, port operational
delays, or externally caused downtimes were excluded
from the analysis; the focus was on technical downtimes.
Data processing included data cleaning and categorization.
Incomplete, inaccurate, or duplicate records were eliminated.

2.2. Analysis Method

The analytical framework adopted in this study is
designed to balance methodological rigor with operational
interpretability. Rather than maximizing predictive accuracy
through black-box models, the focus is placed on transparent,
rule-based methods that allow failure mechanisms and
downtime drivers to be directly interpreted by fleet managers
and marine engineers. Pareto analysis is employed to identify
risk concentration and critical subsystems at the fleet level,
while the CART algorithm is used to uncover threshold-
based relationships and nonlinear patterns governing
downtime duration. This combined approach enables both
prioritization of dominant failure modes and actionable
insights for maintenance planning and role-based training,
grounded in real operational data.
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2.2.1. Risk assessment and pareto analysis

Risk scores were calculated for each type of failure to
determine the impact of failures on the operational efficiency
of ships. Risk scores were determined using a weighted
scoring method based on the frequency of occurrence,
duration of the failure, and its operational impact. The Pareto
chart created using these scores visually demonstrated the
dominant effect of main engine failures on waiting time.
Pareto analysis was applied to confirm the finding that
approximately 80% of the total downtime is concentrated in
approximately 20% of the failures.

2.2.2. CART algorithm

The CART algorithm was used to analyze the effects of
ship main engine failures on ship waiting times. CART is
a powerful and flexible machine learning approach widely
used in classification and regression problems [25]. In the
regression context, CART creates a binary decision tree
structure that iteratively partitions the dataset into two
subsets to identify the relationship between variables.

The modeling process begins by treating the entire dataset as
a single node (root node). The algorithm then partitions the
dataset into two subsets by determining the most appropriate
independent variable and threshold value that minimizes the
variance or mean square error (MSE) of the target variable.
This process continues iteratively until one of the predefined
stopping criteria is met (e.g., maximum tree depth, minimum
terminal node size). In the final stage, the mean value of the
target variable at each terminal node (leaf node) is assigned
as the predicted value for all observations belonging to that
node.

The CART model, being a nonparametric method, is highly
effective in capturing nonlinear relationships between
variables. Furthermore, the model’s visualizability and
interpretability facilitates easy understanding for both
technical and operational stakeholders in decision-making

Mooring
Operation
1%

Cargo
Operation
10%

Figure 1. Distribution of stoppages by system.
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processes. In this study, model performance was evaluated
using R? (coefficient of determination), root MSE (RMSE),
MSE, mean absolute deviation (MAD), and mean absolute
percentage error (MAPE) statistics.

In addition, a dendrogram analysis was performed using
Ward’s linkage method and the Euclidean distance metric
to support the findings obtained from the CART model.
This approach measures the similarity between failure types
to form hierarchical clusters, thereby enabling a visual
classification of the relationships among different categories
of engine failures.

3. Findings

3.1. General Situation: Summary of the Number of
Downtime

During the five-year evaluation period, a total of 397
unscheduled downtime events were recorded in the container
ship fleet under review. These stoppages were grouped under
three main operational categories: Propulsion System, Cargo
Operation, and Mooring Operation activities.

When examining the distribution of stoppages by system,
as shown in Figure 1, 89% of downtimes (352 incidents)
were due to propulsion systems. Stoppages during cargo
operations accounted for 10% of unplanned stoppages,
with 39 incidents. The remaining 1% (6 incidents) occurred
during mooring operations.

Table 1 shows the total number of stoppages and durations
by category. The total unplanned stoppage duration was
calculated to be approximately 1,767 hours over the five-
year period. The duration distribution is also parallel to the
number of incidents.

Based on these data, the average duration of a downtime is
calculated to be approximately 4.5 hours. Across the fleet,
the annual average number of unplanned downtimes per
vessel is approximately 1.6. When the average main engine

Propulsion H Propulsion
System System
89% ] Cargo
Operation
Mooring
Operation
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operating time is assumed to be 4,200 hours per year, the
ratio of time spent on downtime to total sailing time is
approximately 0.15%. While this low ratio indicates that
fleet operations are generally planned and controlled, it
also points to the need for priority intervention in terms of
propulsion system failure density, maintenance planning,
and technical training.

3.2. Distribution by Cause of Downtime

Of the 397 unplanned downtimes that occurred during
the five-year period under review, 89% (352 incidents)
were directly attributable to propulsion systems. This high
percentage highlights how critical main propulsion systems
are to operational continuity on container ships.

Based on this criticality, stoppages related to propulsion
systems were detailed in terms of their technical components.
The propulsion system data, shown in Table 2 with a total
of 352 incidents and 1,460 hours of downtime, was broken
down into subsystems and analyzed.

Due to the combined reporting of some incidents, mandatory
downtime caused by main propulsion systems has been
divided into nine main technical categories. This analysis
aims to contribute to fleet management, maintenance
planning, and technical training content by identifying the
subsystems where downtime is concentrated.

In this distribution, main engine failures are clearly ahead
not only in terms of the number of incidents but also in total
downtime duration. The entire propulsion system alone
accounted for approximately 50% of the downtime, with a
total of 730 hours of downtime across 256 incidents. The
most frequently recurring issues include fuel injection
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problems, fuel pump (FP) failures, and problems caused by
the exhaust system.

In contrast, although only 4 incidents occurred in the
propeller, drive shaft, stern tube, and bow thruster group, the
total downtime was quite high at 384 hours. This group, with
an average downtime of 96 hours per incident, shows that
these system failures are rare but cause very long operational
interruptions. In such cases, the complete operational
downtime of the ship brings with it commercial losses as
well as safety risks. These types of failures usually require
the ship to wait in port for weeks for repairs. Emergency
intervention is not possible; dry docking is usually required.
Therefore, these components are considered critical priority.
Preventive vibration analysis, oil analysis programs, and
proactive maintenance scheduling are vital for this type of
system failure.

Some systems with relatively few incidents stand out due
to their singular impact. Specifically, in the “Hull/Fire/
Maneuvering” category, despite only 8 incidents, the total
downtime was 116 hours, with an average interruption of
14.5 hours per incident. This finding demonstrates that some
infrequent failures have a high operational impact.

Boiler systems stand out with a total of 151 hours of
downtime across 33 incidents. The average downtime of
4.6 hours highlights the need for continuous maintenance
and monitoring of this system. Especially, boiler tube
perforations lead to prolonged port delays and deviations
from estimated arrival times.

Twelve incidents occurred in the Piping, Valves, Pumps,
Coolers, and Heaters group, resulting in a total of 36 hours

Table 1. Number of downtimes and durations by category.

Ronpiion Cargo operation Mooring operation Total

system
Total downtime (number) 352 39 6 397
Total downtime duration (hours) 1460 272 35 1767

Table 2. Summary of downtime in propulsion systems by subcategory.

Propulsion system Number of incidents Duration (hour) Average duration
Automation & Alarm systems 7 4 0.6
Boiler system 33 151 4.6
Generator load sharing & Black out 25 19 0.8
Hull & Fire & Maneuvering 8 116 14.5
Main engine 256 730 2.9
Piping, valves, P/P, cooler/heater 12 36 3.0
Propeller & Shaft & Stern tube & Thruster 4 384 96.0
Others 7 20 2.9
Total 352 1460 4.1

15



Araks Ekmekgioglu.
Downtime in Maritime Operations

of downtime. With an average downtime of 3 hours, these
components are classified as medium priority. Diesel
generator load sharing, automation and alarm systems, and
other groups have a limited impact on propulsion system
downtime, with both low frequency and low duration. Most
failures in these systems were resolved in less than 1 hour
per incident. Incidents under the “Other” category include
delays due to GPS display errors, pitch control failures,
rudder & pitch-controlled propeller system failures, and
items recorded during flag state inspections in port.

As a result, not only the frequency of propulsion system
stoppages but also their individual impacts and system-based
temporal intensity should be considered in fleet management.
In addition to the main engine, boiler systems, maneuvering
control systems, and propeller structures are also highlighted
as priority areas in terms of preventive maintenance, spare
parts inventory management, and training.

3.3. Critical System Analysis: An in-Depth Look
Detailed analysis of fleet data shows that some technical
systems fail more frequently than others and have a much
greater operational impact. In this section, critical subsystems
causing the most downtime or leading to long durations in
individual incidents are analyzed separately. The aim is to
provide targeted insights for optimizing fleet management
and technical maintenance strategies. Table 3 presents the
number of main engine failure incidents and their downtimes
by subcategory.

In the critical system analysis, main engine-related failures
were divided into subcategories and examined. CART
regression analysis and hierarchical clustering (Ward-
Linkage, Euclidean Distance) methods were evaluated
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together to determine the impact of main engine failures on
ship downtime. The overall goal was to reveal the distribution
of downtime events by main engine subcategories and to
identify which systems most significantly impact operational
continuity.

In the CART regression analysis, waiting time (in hours)
was considered the dependent variable and failure types
were considered the independent (explanatory) variables.
The entire data set consisted of 11 different failure types,
and the total number of events and average durations for each
failure type were evaluated. The model was evaluated using
the median and median absolute deviation (MAD) metrics,
taking into account the distribution structure of the data
and the sample size. This approach mitigated the impact of
outliers in the data set, providing a more robust statistical
representation.

Statistical performance metrics for the model generated
using the CART method demonstrate that the analysis
results have a strong predictive capacity. A total of four
predictor variables were used in the resulting model, all of
which were found to be statistically significant. The model’s
coefficient of determination (R2=99.78%) indicates that
almost all of the variance in the dependent variable can be
explained. Furthermore, the error measures (RMSE=1.6601,
MSE=2.7561, MAD=0.7304, MAPE=0.0377) were quite
low. These results demonstrate that the model successfully
predicts ship waiting times with high accuracy and low error
(Table 4).

Figure 2 demonstrates the variation in model error, measured
by Relative MAD, with respect to the number of terminal
nodes. While increasing the number of nodes typically
lowers the error rate, an excessive number of nodes can

Table 3. Number and duration of main engine incidents by subcategory.
Main engine failures ljﬁgg:;t:f Duration (hour) Duration (day)
Oil mist detector 27 53.8 2.2
Fuel pump & Inj VV/Inj pipe 52 153.6 6.4
Fuel line & Fuel filter 24 60.3 2.5
Exhaust 44 96.1 4.0
Automation & Sensor failure 17 23.6 1.0
Lubrication system & Water in oil & LO filter 16 76.0 3.2
Cooling system & Cover 14 54.0 22
Piston & Rings 7 49.5 2.1
Start & Maneuvering & Governor system 24 76.1 3.2
Alpha lubricator 10 159 0.7
Other 21 71.3 29
Total 256 730.2 30.4
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lead to model complexity and overfitting, thereby reducing
the model's ability to generalize. Therefore, identifying
the optimal trade-off is crucial. The analysis determined
the optimal structure to be 8 terminal nodes, where the
Relative MAD was minimized to 0.0291. At this optimal
configuration, the correlation coefficient of the training set
was calculated as 87.33%.

The regression tree generated as a result of the analysis is
shown in Figure 3. At the root node of the tree (Node 1), the
median waiting time for all faults was determined to be 60.25
hours. This value serves as a general indicator of performance
across all fault types examined. The high median absolute
deviation (MAD=25.13) indicates significant differences in
waiting times across fault types.

The model categorizes failure types into two main groups.
The main difference between these two groups is the median
values in the waiting time distributions. The first group
(Node 2) consists of failures with shorter waiting times on
average, while the second group (Node 5) includes failure

Table 4. Performance metrics for the CART regression model.

Total predictors 4
Important predictors 4
Number of terminal nodes 8
Minimum terminal node size 1
R-squared 99.78%
Root mean squared error (RMSE) 1.6601
Mean squared error (MSE) 2.7561
Mean absolute deviation (MAD) 0.7304
Mean absolute percent error (MAPE) 0.0377

CART: Classification and Regression Tree

0.7
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types characterized by longer waiting times. The first
separation of the model was based on the “main engine event
type” variable, which revealed two main groups. The first
group represents events in the categories of alpha lubricator,
automation & sensor, cooling system, fuel line & filter, OMD,
piston & rings (Alp_Lub, Au_Sen, Cool, FL., OMD, Pist),
while the second group includes events in the categories of
exhaust, FP & injection valve (inj vv), lubrication system,
other, and start & manuevring (Exh, FP, Lub, Other, Star).
The median value for the first group on the left branch was
calculated as 51.63, and for the second group on the right
branch as 76.05. This shows that waiting times due to engine
failures in the second group have a higher impact.

In particular, the median value for FP and valve failures was
determined to be 153.64, standing out as the factor with the
highest impact on the system. This clearly demonstrates
that fuel injection system malfunctions are a key parameter
significantly affecting downtime. Fuel injection line
malfunctions (pump barrel and plunger wear, control rack/
governor lockup, fuel valve nozzle clogging, common-rail
pressure leaks, timing deviations) directly reduce cylinder
combustion pressure and ignition quality. The resulting
effects include power loss, unsteady combustion, exhaust
temperature deviations, vibration, and the necessity of
slowdowns/stoppages for safety reasons. Many interventions
on the fuel injection system at sea can extend downtime due
to the need for equipment cooling, fine-tolerance component
replacement, calibration, testing procedures, or limited
equipment and spare parts availability.

Similarly, faults related to the “Exhaust (Exh)” and
“Lubrication (Lub)” systems were observed to have high
median values. Because these are critical parameters that
directly affect engine performance, they stand out as the most

Optimal = 0.0291

Number of Terminal Nodes

Figure 2. Optimization of the node.
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significant contributors to downtime and require careful
attention. It is technically expected that exhaust (Exh) and
lubrication (Lub) faults produce high median downtime.
Soot/oil carryover in the exhaust line, turbocharger fouling,
or manifold and seal leaks increase back pressure, disrupting
combustion. Safety measures such as power reduction/stop,
cooling, cleaning, and rebalancing (turbo, sensor, insulation)
prolong downtime. On the lubrication side, pressure drop/
pump failure, filter blockage, viscosity and temperature
deviations, or increased metal particles lead to critical
scenarios such as bearing damage and the risk of crankcase
explosion. This necessitates time-consuming interventions
such as oil sample analysis, circuit checks, filter and cooler
maintenance, and bearing inspections. In conclusion, Exh
and Lub faults are critical parameters that directly affect
engine performance.

NODE 1

Median = £0.2500
MAD = 25.1267

Total Count = 11

Main Engine incidents = {Alp_Lub, Au_Sen, Cool, FL, OMD, Pist}
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In contrast, failures occurring in the “sub-components (Alp_
Lub)”, “cooling (Cool)”, and “sensor (Au_Sen)” systems
have lower median values. This result can lead to shorter
downtimes due to the early detection of these failures and
rapid intervention during maintenance processes. Failures in
these three groups are generally localized and are quickly
managed onboard using redundant/twin equipment (stand-
by pumps, parallel heat exchangers), isolation valves, and
modular component replacement. In cooling circuits, flow
is maintained with a pump/heat exchanger switch-over;
system safety is maintained by calibration/restart or rapid
replacement on the sensor side; and in lubrication sub-
components, filter replacement, leak repair, and bypass
options shorten downtimes. Furthermore, since these failures
are often detected with early warning (alarm), they can be
deferred until port under power-limited operation rather than

Main Engine incidents = {Exh, FP, Lub, Other, Star}

NODE 2

Median = 51.6250
MAD = 13.1610

Total Count =6

NODE 5

Median = 76.0500
MAD = 20.4856

Total Count = §

Main Engine incidents = {Alp_Lub, Au_Sen}

Main Engine incidents = {Cool, FL, OMD, Pist}

Main Engine incidents = {FP} |

| Main Engine incidents = {Exh, Lub, Other, Star}

TERMINAL NODE 1
Median = 19.7420

MAD = 3.89200

Total Count = 2

NODE 3

Median = 5§3.8500
MAD = 2.73750

Total Count = 4

TERMINAL NODE 5
Median = 153.644

MAD = 0.00000

Total Count = 1

NODE 6

Median = 76.0250
MAD = 6.20850

Total Count = 4

| Main Engine incidents = {FL}

[Main Engine incidents = {Cool, OMD, Pist}}

Main Engine incidents = {Exh}

| Main Engine incidents = {Lub, Other, Star}

TERMINAL NODE 2

Median = 60.2500
MAD = 0.00000

Total Count = 1

NODE &

Median = 53.7500
MAD = 1.48333

Total Count = 3

TERMINAL NODE 6

Median = 96.0840
MAD = 0.00000

Total Count = 1

NODE 7
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Figure 3. CART regression analysis results showing the effect of main engine failures on downtime.
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Pareto Chart of Main Engine incidents
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Figure 4. Pareto chart showing the severity of main engine failures according to risk scores.

Dendrogram
Ward Linkage, Euclidean Distance

7.69-

513+

Distance

2.56 -

—

/_I_

0.00 I_

OMD Exh FP FL

Oti'ler Star  Au_Sen Alp_Lub Pist Lub Cool

Observations

Figure 5. Dendrogram showing the similarity levels of fault types.

a full shutdown for safety reasons; consequently, downtimes  score in ship operations. According to the analysis results,

are typically short.

failures caused by OMD were identified as the most critical

Figure 4 shows a Pareto analysis of main engine failures. The failure type, accounting for 63.1% of the total risk. This result
graph shows the severity of failure types based on the risk demonstrates the crucial importance of regular maintenance
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and monitoring of OMD systems for main engine safety and
operational continuity. OMD alarms are generally based on
two factors: actual oil mist detection (crankcase fire risk,
high density) or false alarms due to sensor sensitivity and air
pressure adjustment. In these events, the operational impact
is significant because the engine automatically shuts down
or reduces speed. Often, the ship must be shut down until the
alarm is verified. While some failures in these systems do not
pose a real risk, each one triggers a maximum operational
response due to safety protocols. Even if there is a sensor
error, the engine must be shut down and the necessary
checks performed seriously, just like the actual oil mist
risk. A high-priority, critical alarm is due to the potential
for major damage to the engine or a crankcase explosion.
This demonstrates that factors such as calibration frequency
of OMD systems, sensor quality, and crew diagnostic ability
are critical for operational continuity.

OMD failures are followed by FP and valve failures (14.8%)
and exhaust system (Exh) failures (7.9%). When these three
failure types are considered together, they account for 85.8%
of the total risk, indicating that operational disruptions in
the majority of the system are caused by these components.
Other failures (starting system, fuel leakage, lubrication
system, etc.) constitute only less than 15% of the total risk.

This finding is consistent with the “80/20 Pareto principle”
and demonstrates that preventive maintenance of critical
components, particularly OMD, fuel, and exhaust systems,
should be prioritized to improve system performance and
reduce ship downtime.

Comparing the findings with those obtained through
hierarchical cluster analysis (Figure 5), significant parallelism
was observed between the two methods. The clustering of
“OMD?”, “Exh”, and “FP” failures within the same cluster in
the dendrogram is consistent with the high median values of
these parameters in the CART analysis. Similarly, the close
clustering of “Cool”, “Lub”, and “Run” failures confirms the
high correlation between these components due to common
operating conditions (e.g., heat transfer and lubrication
processes). Another cluster includes the auxiliary sensor
(Au_Sen), alpha lubricator (Alp), and starting system (Star)
failures, indicating that these failures are related to electronic
control and monitoring systems.

4. Discussion

In this section, the findings obtained in the study are
compared with similar studies in the literature and their
operational implications are evaluated. The fact that 89% of
the unplanned stoppages identified in the study were caused
by propulsion systems reveals that ship operations are largely
dependent on these systems. This finding coincides with the
assessment in Vizentin et al.’s [26] study. Vizentin et al. [26]
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states that propulsion systems are the main source of failures
in container ships, particularly concentrated in the main
engine and shaft lines. The high failure rate poses a risk not
only technically but also in terms of operational reliability.
Numerical and experimental studies on the risk of crankcase
explosions and the reliability of OMD provide concrete
scientific evidence for optimizing detector threshold values
and reducing false alarms by analyzing the morphological
characteristics of oil mist particles in the crankcase [16,17].

Failures occurring in systems such as stern tube and propellers
cause quite long downtimes despite being observed at low
frequencies. This creates a special risk profile in terms of
fleet management. A technical report prepared by Kuroiwa
et al. [27] states that stern tube bearing failures are mostly
caused by deterioration in lubrication systems, leaks in
gaskets, and inadequate temperature control. Similarly,
an experimental study by Chang et al. [28] showed that
water-lubricated shaft sleeve bearings are sensitive to
parameters such as temperature, load, and speed, and even
a small tolerance deviation can cause long-term operational
downtime. In this context, shaft sleeve and propeller systems
should be considered strategic critical systems due to their
high downtime, despite the low number of incidents.

The source of some unplanned stoppages of ships is not
technical failure but rather faulty or overly sensitive alarm
notifications from automation systems. In particular, “false
positive” alarm events originating from OMD systems
create uncertainty in the crew’s decision-making mechanism
and sometimes lead to unnecessary stoppages. Thorpe and
Pabby’s [29] comprehensive analysis indicates that the
high sensitivity of OMD systems does not always provide
a safety advantage; on the contrary, false alarms lead to a
loss of confidence and psychological stress among the ship’s
crew. In this context, it is evident that topics such as alarm
management and crew decision-making competence should
be an integral part of technical training.

5. Evaluation and Results

This study systematically evaluated 397 unplanned downtimes
recorded on container ships during the 2017-2021 period.
The center of gravity of downtimes was the propulsion
system (352 incidents; 89%), while cargo operations (39
incidents; 10%) and mooring downtimes (6 incidents; 1%)
were among the remaining downtimes. Total unplanned
downtime was calculated as 1,767 hours, with an average
duration per incident across the fleet of approximately 4.5
hours. Downtimes related to the main engine alone, within
the propulsion system, accounted for approximately half of
the total duration, with 256 incidents and 730 hours.

A detailed examination of the main engine subtypes revealed
that FP-injector, exhaust (Exh), and lubrication (Lub)
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failures were characterized by high median wait times, while
cooling (Cool), sensor (Au_Sen), and subcomponent (Alp_
Lub) failures were managed in relatively short times. In the
CART regression tree, the root node began with a median
wait time of 60.25 hours; after the decomposition, one
branch corresponded to a median wait time of 51.63 hours,
and the other to 76.05 hours. In this structure, the median
for FP failures reached the highest value of ~153.64 hours,
indicating that fuel injection failures significantly prolonged
wait times. Hierarchical clustering results supported this
picture; the close clustering of OMD-Exh-FP indicated a
tendency toward long waits, while the association of Cool-
Lub-Pist indicated a common behavior related to heat
transfer and lubrication conditions. Pareto analysis showed
that OMD-related events accounted for 63.1% of the total
risk, FP for 14.8%, and Exh for 7.9%; these three items
together reached 85.8%. This overall picture indicates that a
small number of critical items at the fleet level drive a large
portion of the total waiting time.

A condition-based maintenance package is recommended
for the fuel-exhaust-lubrication triad, where risks are most
pronounced. As a technical maintenance strategy, cyclical
component replacement programs should be established
fleet-wide for injectors, FPs, and exhaust components. To
reduce both fuel and exhaust system problems, main engine
performance values, especially maximum combustion
pressure values, should be checked more frequently, and
maintenance should be planned to anticipate potential
problems.

On the fuel side, test bench calibration records for injection
pumps/injectors should be regularly maintained. To save
time in the event of malfunctions in these systems, especially
based on competency, third- or fourth-level engineers should
be trained and made aware of maintaining spare parts for
replaceable fuel system components.

Exhaust gas temperature trend monitoring should be
implemented in the exhaust; deviations above +30 °C
between cylinders can be detected before they reach
alarm levels, enabling early intervention. To achieve this,
implementing a checklist for systems under the control and
monitoring of watchkeeping engineers can prevent forced
shutdowns related to the exhaust system, particularly through
regular monitoring of exhaust temperatures.

Monthly oil analysis (particulate matter/viscosity/BN)
results in the lubrication system should be visualized using a
“traffic light” approach. Laboratory results should be closely
monitored by the office and the ship. Onboard oil analyses
should be increased in frequency, and all engineers should
be trained on this subject.
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To support these systems, which frequently cause shutdowns,
the minimum critical onboard inventory (fuel valve nozzles,
plunger/barrel, exhaust valve spares, pressure/temperature
sensors, filters) should be recalculated according to route
and lead time; low-threshold warnings should be entered
into the planned maintenance system. The goal is to reduce
the number of stoppages caused by these three by >15% per
year and to shorten the wait per event by >30 min.

Delays in OMD-related shutdowns often arise from the
inability to quickly distinguish between true and false alarms.
A three-tiered approach is recommended for every ship: (i)
Hardware: Sensor calibration intervals should be shortened;
a 2-minute quick checklist for aspiration lines, filters, and
sampling should be standardized. (ii) Workflow: A one-
page “procedure/verification protocol” (reserve sensor, local
heat/vibration, oil mist monitoring) to be followed when an
alarm occurs should be visible in the engine control room.
(iii) Recording: The ‘“alarm time-verification steps-result”
fields should be mandatory in the engine room logbook. The
goal is to reduce unnecessary OMD-related delays by 30%
and reduce verification time in real-world situations to <5
minutes.

The utility of the CART decision tree depends on up-to-
date and consistent data. Mandatory, coded fields (system/
subsystem, start and end, steps implemented, verification
period, result) should be added to incident forms; free
text should be kept to a minimum. The model should be
retrained at least annually with new data; tree depth, number
of terminal nodes, R2?, and RMSE should be reported. The
risk thresholds used in Pareto should be updated with annual
reviews based on fleet age, fuel quality, or line changes. A
“top three root causes - top three actions” table should be
communicated to the fleet through ship-to-office feedback
meetings. Average waiting per stop, incident frequency, and
duration in critical clusters should be monitored as indicators
of success.

To translate technical measures into lasting results, a
structured fleet-wide competency development program is
recommended. A role-based competency matrix (3%, 2™,
chief engineer, electrician, etc.) should be established. OMD
alarm management, critical subsystem diagnostics derived
from CART, fuel-exhaust-lubrication package procedures,
and shaft line early warning signals should be core modules
within this matrix.

Two channels for training delivery: (i) Microlearning
(10-12-minute videos/notes), (ii) scenario-based exercises
(monthly online + quarterly live demonstration).
Standardized checklists and time objectives should be used
for each scenario. An onboarding package, familiarization
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training (first 30 days) should be mandatory for newly
appointed personnel, and competency should be verified
with an annual refresher exam (>80% success). To track
the impact of training, KPIs (Key Performance Indicators)
(training participation rate, drill success score, and fault
response time after training) should be monitored, and ships
with low performance should be inspected and trained. The
goal is to reduce downtime in critical clusters by 10-15% and
diagnosis times by 20% in the first 12 months after training.

6. Conclusion

This study presents a fleet-scale analysis of unscheduled
downtime in container ship operations based on five years
of operational records from 50 vessels. By combining risk-
based Pareto analysis with an interpretable CART regression
framework, the research identifies a limited number of
technical subsystems that dominate both downtime frequency
and duration. The results demonstrate that propulsion-
related failures particularly those associated with the main
engine fuel, exhaust, lubrication, and oil mist detection
systems account for a disproportionate share of operational
disruption, despite the presence of numerous lower-impact
failure modes.

Beyond identifying critical failure clusters, the study
contributes a practical, data-driven framework that links
empirical downtime patterns to maintenance prioritization
and role-based training strategies. The emphasis on
interpretability enables direct translation of analytical
outcomes into actionable decisions for fleet managers
and marine engineers. While the findings are specific to
container ship operations within a homogeneous fleet, the
proposed analytical approach is transferable to other vessel
types and operational contexts. Future studies may extend
this framework by incorporating additional fleets, integrating
exposure-normalized indicators, and evaluating long-
term performance improvements resulting from targeted
maintenance and training interventions.
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